Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A molecular mechanical model that reproduces the relative energies for chair and twist‐boat conformations of 1,3‐dioxanes

Identifieur interne : 001D69 ( Main/Exploration ); précédent : 001D68; suivant : 001D70

A molecular mechanical model that reproduces the relative energies for chair and twist‐boat conformations of 1,3‐dioxanes

Auteurs : Allison E. Howard [États-Unis] ; Piotr Cieplak [États-Unis, Pologne] ; Peter A. Kollman [États-Unis]

Source :

RBID : ISTEX:8032DE42E773AF2512AD1CD390CDF1760AD72FF6

English descriptors

Abstract

We present molecular mechanics calculations on the conformational energies of several 2,2‐dimethyl‐trans‐4,6‐disubstituted‐1,3‐dioxanes. Previous studies by Rychnovsky et al.1 have suggested that the relative conformational energies of chair and twist‐boat forms of these 1,3‐dioxanes were poorly represented by the molecular mechanical models MM2* and MM3* (MacroModel2 implementations of MM2 and MM3) both when compared to experiment and to high‐level quantum mechanical calculations. We have studied these molecules with a molecular mechanical force field which features electrostatic‐potential‐based atomic charges. This model does an excellent job of reproducing the relative conformational energies of the highest level of theory (MP2/6‐31G*) applied to the problem. Furthermore, when empirically corrected using the MP2/6‐31G* relative conformational energies of the unsubstituted compound 2,2,4‐trimethyl‐1,3‐dioxane, the absolute energy differences calculated with this new model between the chair and twist‐boat conformers for five substituted compounds are within an average of 0.30 kcal/mol of the MP2/6‐31G* values. The correlation with experiment is also very good. One can, however, modify the initial molecular mechanical model with a single V1(OCOC) torsional potential and do an excellent job in reproducing the absolute conformational energies of the dioxanes as well, with an average error in conformational energies of 0.45 kcal/mol. This same torsional potential was independently developed by comparing ab initio and molecular mechanical energies of the molecule 1,1‐dimethoxymethane. Thus, we have succeeded in developing a general molecular mechanical model for 1,3‐dioxoalkanes. In addition, we have compared the standard MM2 and MM3 models with MM2* and MM3* (ref. 2) and have found some significant differences in relative conformational energies between MM2 and MM2*. MM2 has an improved correlation with the best ab initio data compared to MM2* but is still significantly worse than that found with lower‐level ab initio or AM1 semiempirical quantum mechanics or the new molecular mechanical model presented here. MM3 leads to conformational energies very similar to MM3*. Energy component analysis suggests that the single most important element in reproducing the conformational equilibrium is the electrostatic energy. This fact rationalizes the success of AMBER models, whose fundamental tenet is the accurate representation of quantum mechanically calculated molecular electrostatic effects. © 1995 by John Wiley & Sons, Inc.

Url:
DOI: 10.1002/jcc.540160211


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A molecular mechanical model that reproduces the relative energies for chair and twist‐boat conformations of 1,3‐dioxanes</title>
<author>
<name sortKey="Howard, Allison E" sort="Howard, Allison E" uniqKey="Howard A" first="Allison E." last="Howard">Allison E. Howard</name>
</author>
<author>
<name sortKey="Cieplak, Piotr" sort="Cieplak, Piotr" uniqKey="Cieplak P" first="Piotr" last="Cieplak">Piotr Cieplak</name>
</author>
<author>
<name sortKey="Kollman, Peter A" sort="Kollman, Peter A" uniqKey="Kollman P" first="Peter A." last="Kollman">Peter A. Kollman</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:8032DE42E773AF2512AD1CD390CDF1760AD72FF6</idno>
<date when="1995" year="1995">1995</date>
<idno type="doi">10.1002/jcc.540160211</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-RH4J0MK9-G/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001720</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001720</idno>
<idno type="wicri:Area/Istex/Curation">001720</idno>
<idno type="wicri:Area/Istex/Checkpoint">000B44</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000B44</idno>
<idno type="wicri:doubleKey">0192-8651:1995:Howard A:a:molecular:mechanical</idno>
<idno type="wicri:Area/Main/Merge">001E43</idno>
<idno type="wicri:Area/Main/Curation">001D69</idno>
<idno type="wicri:Area/Main/Exploration">001D69</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">A molecular mechanical model that reproduces the relative energies for chair and twist‐boat conformations of 1,3‐dioxanes</title>
<author>
<name sortKey="Howard, Allison E" sort="Howard, Allison E" uniqKey="Howard A" first="Allison E." last="Howard">Allison E. Howard</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Cieplak, Piotr" sort="Cieplak, Piotr" uniqKey="Cieplak P" first="Piotr" last="Cieplak">Piotr Cieplak</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco</wicri:cityArea>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Current Address: Department of Chemistry, University of Warsaw, Pasteur 1, 02‐093 Warsaw</wicri:regionArea>
<wicri:noRegion>02‐093 Warsaw</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kollman, Peter A" sort="Kollman, Peter A" uniqKey="Kollman P" first="Peter A." last="Kollman">Peter A. Kollman</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Correspondence address: Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco</wicri:cityArea>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Computational Chemistry</title>
<title level="j" type="alt">JOURNAL OF COMPUTATIONAL CHEMISTRY</title>
<idno type="ISSN">0192-8651</idno>
<idno type="eISSN">1096-987X</idno>
<imprint>
<biblScope unit="vol">16</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="243">243</biblScope>
<biblScope unit="page" to="261">261</biblScope>
<biblScope unit="page-count">19</biblScope>
<publisher>John Wiley & Sons, Inc.</publisher>
<pubPlace>New York</pubPlace>
<date type="published" when="1995-02">1995-02</date>
</imprint>
<idno type="ISSN">0192-8651</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0192-8651</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Absolute agreement</term>
<term>Absolute energy differences</term>
<term>Additional torsional term</term>
<term>Amber</term>
<term>Angle parameters</term>
<term>Anomeric</term>
<term>Anomeric effect</term>
<term>Athe coefficient</term>
<term>Atom types</term>
<term>Average energy difference</term>
<term>Bond angles</term>
<term>Chair conformation</term>
<term>Chair conformations</term>
<term>Charge distribution</term>
<term>Charge model</term>
<term>Chem</term>
<term>Chemical shifts</term>
<term>Cieplak</term>
<term>Coefficient</term>
<term>Computational</term>
<term>Computational chemistry</term>
<term>Computational methods</term>
<term>Conformation</term>
<term>Conformational</term>
<term>Conformational energies</term>
<term>Conformational energy</term>
<term>Conformer</term>
<term>Conformer energies</term>
<term>Conformers</term>
<term>Correlation coefficient</term>
<term>Dihedral</term>
<term>Dihedral angle</term>
<term>Dihedral angles</term>
<term>Dihedral parameters</term>
<term>Dioxanes</term>
<term>Electrostatic energies</term>
<term>Electrostatic energy</term>
<term>Electrostatic potentials</term>
<term>Energy components</term>
<term>Energy difference</term>
<term>Energy differences</term>
<term>Equivalencing</term>
<term>Error bars</term>
<term>Experimental data result</term>
<term>Experimentalor calculational method</term>
<term>Fitting process</term>
<term>Force field</term>
<term>Force field parameters</term>
<term>Force fields</term>
<term>Highest level</term>
<term>Hyperbolic penalty function</term>
<term>Initio</term>
<term>Initio calculations</term>
<term>Intermolecular interactions</term>
<term>John wiley sons</term>
<term>Kollman</term>
<term>Kollman table</term>
<term>Linear relationship</term>
<term>Mechanical model</term>
<term>Mechanical models</term>
<term>Mechanics calculations</term>
<term>Mechanics model</term>
<term>Mediocre correlation</term>
<term>Methyl</term>
<term>Methyl carbons</term>
<term>Methyl group</term>
<term>Methyl groups</term>
<term>Methyl substituent</term>
<term>Molecular mechanics</term>
<term>Molecular mechanics calculations</term>
<term>Molecular mechanics energy</term>
<term>Molecular mechanics force field</term>
<term>Molecular mechanics models</term>
<term>Molecule</term>
<term>Negative energy</term>
<term>Nonbonded parameters</term>
<term>Other terms</term>
<term>Parameter</term>
<term>Partial charges</term>
<term>Phase shift</term>
<term>Point charges</term>
<term>Poor correlation</term>
<term>Quantum mechanics</term>
<term>Reaction energies</term>
<term>Relative energies</term>
<term>Relative energies table</term>
<term>Resp</term>
<term>Ring atoms</term>
<term>Ring model</term>
<term>Rychnovsky</term>
<term>Scale factor</term>
<term>Simple regression</term>
<term>Standard model</term>
<term>Steric</term>
<term>Substituent</term>
<term>Table viii</term>
<term>Torsion</term>
<term>Torsional</term>
<term>Torsional parameter</term>
<term>Torsional parameters</term>
<term>Total energies</term>
<term>Unsubstituted compound</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="fr">We present molecular mechanics calculations on the conformational energies of several 2,2‐dimethyl‐trans‐4,6‐disubstituted‐1,3‐dioxanes. Previous studies by Rychnovsky et al.1 have suggested that the relative conformational energies of chair and twist‐boat forms of these 1,3‐dioxanes were poorly represented by the molecular mechanical models MM2* and MM3* (MacroModel2 implementations of MM2 and MM3) both when compared to experiment and to high‐level quantum mechanical calculations. We have studied these molecules with a molecular mechanical force field which features electrostatic‐potential‐based atomic charges. This model does an excellent job of reproducing the relative conformational energies of the highest level of theory (MP2/6‐31G*) applied to the problem. Furthermore, when empirically corrected using the MP2/6‐31G* relative conformational energies of the unsubstituted compound 2,2,4‐trimethyl‐1,3‐dioxane, the absolute energy differences calculated with this new model between the chair and twist‐boat conformers for five substituted compounds are within an average of 0.30 kcal/mol of the MP2/6‐31G* values. The correlation with experiment is also very good. One can, however, modify the initial molecular mechanical model with a single V1(OCOC) torsional potential and do an excellent job in reproducing the absolute conformational energies of the dioxanes as well, with an average error in conformational energies of 0.45 kcal/mol. This same torsional potential was independently developed by comparing ab initio and molecular mechanical energies of the molecule 1,1‐dimethoxymethane. Thus, we have succeeded in developing a general molecular mechanical model for 1,3‐dioxoalkanes. In addition, we have compared the standard MM2 and MM3 models with MM2* and MM3* (ref. 2) and have found some significant differences in relative conformational energies between MM2 and MM2*. MM2 has an improved correlation with the best ab initio data compared to MM2* but is still significantly worse than that found with lower‐level ab initio or AM1 semiempirical quantum mechanics or the new molecular mechanical model presented here. MM3 leads to conformational energies very similar to MM3*. Energy component analysis suggests that the single most important element in reproducing the conformational equilibrium is the electrostatic energy. This fact rationalizes the success of AMBER models, whose fundamental tenet is the accurate representation of quantum mechanically calculated molecular electrostatic effects. © 1995 by John Wiley & Sons, Inc.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Pologne</li>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Howard, Allison E" sort="Howard, Allison E" uniqKey="Howard A" first="Allison E." last="Howard">Allison E. Howard</name>
</region>
<name sortKey="Cieplak, Piotr" sort="Cieplak, Piotr" uniqKey="Cieplak P" first="Piotr" last="Cieplak">Piotr Cieplak</name>
<name sortKey="Kollman, Peter A" sort="Kollman, Peter A" uniqKey="Kollman P" first="Peter A." last="Kollman">Peter A. Kollman</name>
<name sortKey="Kollman, Peter A" sort="Kollman, Peter A" uniqKey="Kollman P" first="Peter A." last="Kollman">Peter A. Kollman</name>
</country>
<country name="Pologne">
<noRegion>
<name sortKey="Cieplak, Piotr" sort="Cieplak, Piotr" uniqKey="Cieplak P" first="Piotr" last="Cieplak">Piotr Cieplak</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D69 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001D69 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:8032DE42E773AF2512AD1CD390CDF1760AD72FF6
   |texte=   A molecular mechanical model that reproduces the relative energies for chair and twist‐boat conformations of 1,3‐dioxanes
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021